skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Willis, Eric_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Gas-phase abundance ratios between C2H4O2isomers methyl formate (MF), glycolaldehyde (GA), and acetic acid (AA) are typically on the order of 100:10:1 in star-forming regions. However, an unexplained divergence from this neat relationship was recently observed toward a collection of sources in the massive protocluster NGC 6334I; some sources exhibited extreme MF:GA ratios, producing a bimodal behavior between different sources, while the MF:AA ratio remained stable. Here, we use a three-phase gas-grain hot-core chemical model to study the effects of a large parameter space on the simulated C2H4O2abundances. A combination of high gas densities and long timescales during ice-mantle desorption (∼125–160 K) appears to be the physical cause of the high MF:GA ratios. The main chemical mechanism for GA destruction occurring under these conditions is the rapid adsorption and reaction of atomic H with GA on the ice surfaces before it has time to desorb. The different binding energies of MF and GA on water ice are crucial to the selectivity of the surface destruction mechanism; individual MF molecules rapidly escape the surface when exposed by water loss, while GA lingers and is destroyed by H. Moderately elevated cosmic-ray ionization rates can increase absolute levels of “complex organic molecule” (COM) production in the ices and increase the MF:GA ratio, but extreme values are destructive for gas-phase COMs. We speculate that the high densities required for extreme MF:GA ratios could be evidence of COM emission dominated by COMs desorbing within a circumstellar disk. 
    more » « less
  2. Abstract A new, more comprehensive model of gas–grain chemistry in hot molecular cores is presented, in which nondiffusive reaction processes on dust-grain surfaces and in ice mantles are implemented alongside traditional diffusive surface/bulk-ice chemistry. We build on our nondiffusive treatments used for chemistry in cold sources, adopting a standard collapse/warm-up physical model for hot cores. A number of other new chemical model inputs and treatments are also explored in depth, culminating in a final model that demonstrates excellent agreement with gas-phase observational abundances for many molecules, including some (e.g., methoxymethanol) that could not be reproduced by conventional diffusive mechanisms. The observed ratios of structural isomers methyl formate, glycolaldehyde, and acetic acid are well reproduced by the models. The main temperature regimes in which various complex organic molecules (COMs) are formed are identified. Nondiffusive chemistry advances the production of many COMs to much earlier times and lower temperatures than in previous model implementations. Those species may form either as by-products of simple-ice production, or via early photochemistry within the ices while external UV photons can still penetrate. Cosmic ray-induced photochemistry is less important than in past models, although it affects some species strongly over long timescales. Another production regime occurs during the high-temperature desorption of solid water, whereby radicals trapped in the ice are released onto the grain/ice surface, where they rapidly react. Several recently proposed gas-phase COM-production mechanisms are also introduced, but they rarely dominate. New surface/ice reactions involving CH and CH2are found to contribute substantially to the formation of certain COMs. 
    more » « less